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Previous proposed modifications in the respective constitutive forms of the Newtonian
deviatoric stress tensor and the no-slip boundary condition imposed upon viscous
fluids at solid surfaces, wherein the fluid’s mass velocity is replaced by its volume
velocity, furnishes a complete continuum-hydrodynamic description of thermal
transpiration phenomena occurring in a closed capillary tube filled with a single-
component gas or liquid, the former at negligibly small Knudsen numbers. The
resulting expression for the steady-state thermomolecular pressure difference �p

existing between the two ends of the capillary, the latter maintained at different
temperatures, is free of empirical parameters, such as Maxwell’s thermal-slip
coefficient, upon which current non-continuum theories of the phenomenon are based.
The predicted �p (with the pressure highest at the hotter end) is shown to agree
well with experimental data for gases in the near-continuum limit of vanishingly
small Knudsen number. Also discussed is the experimentally observed lack of
dependence of �p upon the physicochemical properties of the capillary walls, an
observation which accords with the predictions of our theory. Our proposed volume
velocity-based rationalization of the phenomenon of thermal transpiration offers a
strictly continuum no-slip alternative to Maxwell’s widely-accepted thermal creep
explanation thereof, involving slip of the fluid’s mass velocity at a non-isothermal
surface. The agreement of our theoretical predictions of the thermomolecular pressure
difference with experimental data, which is essentially indistinguishable in accuracy
from that provided by Maxwell’s thermal creep theory, provides further support for
the viability of the generic volume velocity-based framework underlying our theory,
the latter having recently been used to also rationalize related thermophoretic and
diffusiophoretic phenomena in gases, as well as thermal diffusion in liquids.

1. Introduction
Consider the steady-state situation shown in figure 1 involving a closed-ended

capillary tube with insulated sidewalls, filled with a single-component fluid (liquid
or gas) whose hot and cold ends are maintained at uniform temperatures, T+ and
T−, respectively. Gravity effects are supposed negligible. According to conventional
hydrodynamic and transport processes notions, including the no-slip assumption on
the bounding surfaces of the capillary tube, no fluid motion should exist in the
capillary, with the only transport phenomenon taking place being that of steady-state
one-dimensional axial heat conduction between the hot and cold ends of the tube.
Concomitantly, owing to the absence of fluid motion, the pressure is predicted to be
uniform throughout the tube, whence, the pressures, p+ and p−, at the respective hot
and cold ends of the capillary tube would be expected to be equal. Explicitly, in the case
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Figure 1. Thermal transpiration model system.

where the fluid’s thermal conductivity is taken to be temperature independent, the only
steady-state phenomena expected to occur are a linear diminution in temperature from
T+ to T− along the length of the capillary, accompanied by a corresponding isobaric
increase in the fluid’s density, the latter as governed by the appropriate equation
of state, ρ = ρ(T ), at the presumably uniform pressure, with (∂ρ/∂T )p < 0. However,
upon performing this experiment with a gas-filled capillary, Reynolds (1879) observed
that, beginning with an initially uniform pressure in the originally isothermal gas, a
steady-state pressure difference, �p =p+ − p− > 0, eventually developed between the
ends of the capillary following imposition of the temperature difference �T = T+ − T−.
(Reynolds’ experiments were conducted with porous disks rather than actual capillary
tubes, with the individual pores in the former case likened to single capillaries.) This
thermomolecular pressure phenomenon, which has subsequently been confirmed by
many others employing a host of different gases (e.g. Knudsen 1910; Los & Ferusson
1952; Annis 1972), is termed thermal transpiration. This terminology was originally
coined by Reynolds (1879) in the course of his attempt to explain the workings of
Crookes’s radiometer (Crookes 1876), a ‘toy’ whose then mysterious windmill rotation
when exposed to light or heat fascinated contemporary observers, including some of
the outstanding scientists of the day (Brush 1976).

As is subsequently discussed, two rather different theories, both limited to gases,
have since been advanced to explain the phenomenon of thermal transpiration in
the so-called ‘near-continuum’ gas-kinetic theory limit of vanishingly small Knudsen
numbers. Both theories, however, lie outside the respective realms of: (i) conventional
continuum hydrodynamics and linear transport theory processes (Bird, Stewart &
Lightfoot 2002), the latter being based upon classical irreversible thermodynamic
principles (de Groot & Mazur 1984); and (ii) classical near-continuum first-order
molecular theories (Hirschfelder, Curtiss & Bird 1954; Chapman & Cowling 1970).
The older of the two theories, due to Maxwell (1879), derives from non-continuum
arguments and supposes that the presence of molecular effects results in thermal ‘slip’
(‘thermal creep’) of the fluid’s barycentric (or mass) velocity vm along the surface
of the capillary. (These non-continuum effects, which lie at the core of the two
analyses cited, are invoked despite the fact that thermal transpiration is observed
to occur under circumstances where the bulk fluid conditions lie well within the
range normally encompassed by conventional continuum transport models (Bird
et al. 2002), namely, where Knudsen numbers, Kn= λ/a, based upon the mean-
free path λ and capillary tube radius a, are very much less than unity.) A second
explanation, due to Derjaguin & Yalamov (1965, 1972), is based upon an approach
which they refer to as constituting ‘the kinetics and thermodynamics of stationary
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processes’ (Derjaguin & Yalamov 1972). This scheme represents a combination of
non-conventional irreversible thermodynamics (de Groot & Mazur 1984) and kinetic
theory (Chapman & Cowling 1970), including second-order corrections to the heat flux
associated with energy transport occurring in the non-continuum, so-called Knudsen
layer proximate to solid surfaces.

In contrast with both Maxwell’s (1879) molecularly-based theory and the seemingly
ad hoc theory of Derjaguin & Yalamov (1972), we offer here an unconventional, but
nevertheless purely macroscopic, continuum-hydrodynamic explanation of thermal
transpiration, deriving from the disparity existing between the fluid’s volume velocity
field vv and its mass-based barycentric velocity field vm (Brenner 2004, 2005a, b). Our
ability to provide a rational and straightforward, albeit unconventional, hydrodynamic
explanation for thermomolecular pressure phenomena, free of molecularly based
arguments, offers additional, albeit implicit, evidence (at least in the case of gases)
of the reality of the velocity difference vv − vm occurring in single-component fluids
undergoing heat transfer, including the constitutive quantification of this velocity
difference in terms of the diffuse flux density j v of volume (Brenner 2005a) (see
(10)–(11)).

2. Current understanding of thermal transpiration
2.1. Maxwell’s (1879) molecularly based interpretation

of Reynolds’ (1879) experiments

In his widely cited work on thermal stresses arising in single-component thermally
inhomogeneous gases, Maxwell (1879) derived the following result for the steady-state
thermomolecular pressure difference occurring in a closed capillary tube:

p+ − p− = 8Cs

µ2

a2ρT
(T+ − T−), (1)

with µ, ρ and T , respectively, the fluid viscosity, density and absolute temperature.
(Given the variation in temperature along the length of the capillary, the values of
µ(T ), ρ(T ) and T itself must be evaluated at some appropriate average value along
the length of the capillary, thereby introducing some uncertainty into the precise
pressure difference predicted by (1), an uncertainty which vanishes in the limit as
the temperature difference between the ends goes to zero.) In this expression Cs

is Maxwell’s slip coefficient, a dimensionless O(1) molecularly derived parameter,
interpreted as being of non-continuum origin (Derjaguin et al. 1976; Talbot et al.
1980), and assumed generally to depend upon the composite physicochemical
properties of the gas and capillary surface (Waldmann & Schmitt 1966). Maxwell’s
approximate calculation of this coefficient yielded Cs = 3/4, at least for Maxwell
molecules (Chapman & Cowling 1970) upon supposing that these molecules are
reflected diffusely from the wall.

Maxwell’s (1879) result (presumably limited to monatomic gases according to
his derivation thereof, although the noble, i.e. monatomic, gases were unknown in
Maxwell’s time) was originally given as

p+ − p− = 6
µ2

a2ρT (1 + G/a)
(T+ − T−),
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with G a slip length,

G =
2

3

(
2

f
− 1

)
λ,

characterizing the purely hydrodynamic, isothermal mass velocity slip, arising from
the non-continuum nature of a gas of otherwise uniform temperature and density
in contact with a surface. (This G-based slip effect is different from Maxwell’s
thermal stress-induced slip, equation (2), since the former can exist even in isothermal
systems.) Here, f is the fraction of incident molecules diffusively scattered at the wall
(0 <f < 1). Upon substituting the expression for G into the general expression for
�p, it is apparent that the correction made by including the isothermal slip factor
scales as λ/a = Kn. As such, its effect disappears as Kn → 0+. This is in contrast to the
thermal slip portion of the tangential boundary condition on the barycentric velocity,
which does not scale (directly) with the Knudsen number and, thus, does not vanish
as the Knudsen number goes to zero (Kogan 1973, 1986, 2003; Kogan, Galkin &
Friedlander 1976; Bobylev 1995; Alexandrov, Friedlander & Nikolsky 2003).

Maxwell derived (1) by solving the vm-based incompressible creeping flow equations
(including the thermal stress enhancement thereof) and energy equations for the
pressure difference arising from a zero net cross-sectional-mean mass flow condition
within the capillary, acting in concert with the following thermal stress-induced generic
slip boundary condition imposed upon the relative tangential component of the fluid’s
barycentric velocity along the surface ∂Vs of a solid boundary (the capillary sidewalls
in the present case):

Is · vm = Cs

µ

ρ
∇s ln T on ∂Vs. (2)

Here, Is = I− nn is the surface projection operator in which I is the dyadic idemfactor,
n a unit outer normal to the fluid on ∂Vs , and ∇s = Is · ∇ the surface gradient operator.
Equation (2) embodies the notion, due to Maxwell (1879), that the existence of a
temperature gradient ∇T in a gas along a solid surface gives rise to a thermal stress,
stemming, in effect, from non-continuum Knudsen boundary-layer effects existing in
the neighbourhood of the solid boundary; this, in turn, causes a local mass flow,
vm �= 0, to occur along ∂Vs , thus violating the classical no-slip tangential velocity
boundary condition imposed upon vm at solid surfaces.

2.2. Review of experimental data

As is evident from (1), an excess pressure exists at the hotter end of the capillary,
even though no net cross-sectionally-averaged mass flow exists within the capillary.
While this relation is found to accord moderately well with experiment, Derjaguin &
Yalamov (1972) report that with use of Maxwell’s original slip coefficient of Cs = 3/4,
this equation underpredicts experimental results by a factor of approximately two
(see the discussion of this factor following (49)). Their alternative theory (Derjaguin
& Yalamov 1965) yielded the following expression for the thermomolecular pressure
difference in gases:

p+ − p− =
6µ2

oR

a2M(ω + 1)pT 2ω+1
(T 2ω+1

+ − T 2ω+1
− ), (3)

with µo the viscosity at the reference temperature To, M the molecular weight, p the
pressure within the system prior to the temperature difference being applied, T the
arithmetic average of the two end temperatures, R the universal gas constant, and
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ω a dimensionless constant, which, as a rule, is taken to be less than unity, being
dependent upon the specific gas present in the system. Equation (3) for �p was shown
by Derjaguin & Yalamov (1972) to be in closer agreement with Knudsen’s (1910)
experiments on hydrogen at a mean pressure of 13 mm Hg, than that predicted
by (1). Knudsen’s additional experimental results for hydrogen at substantially
lower mean pressures do not, however, agree nearly as well with (3), a difference
attributed (Derjaguin & Yalamov 1965) to an additional non-continuum velocity
slip at solid surfaces, over and above that due to Maxwell thermal slip, as earlier
discussed.

Annis (1972) performed a series of experiments on various monatomic and
polyatomic gases at Knudsen numbers much less than unity (Kn ≈ 10−2). In these
experiments, a concentric tube arrangement was employed with a Pyrex capillary
surrounded by a second nickel tube. The tubes were then connected to large nickel
blocks maintained at specified temperatures. In this way, the imposed temperature
gradient in the capillary could be held fixed to within 0.5 ◦K (approx. 0.2% of the
imposed temperature difference). Their experimental data were plotted on graphs of
�p vs. 1/p, in accordance with the predictions of both (1) and (3) (cf. (50)). These
data were fitted with a straight line (whose standard deviation for each gas tested
ranged from 1.2 to 5.6 %). It was found that the measured thermomolecular pressure
difference consistently fell somewhere between the predictions of (1) (where Cs = 3/4)
and (3).

A set of experiments performed by Los & Fergusson (1952) preceding those of Annis
(1972), and carried out using a similar scheme, measured the thermomolecular pressure
difference existing in both argon- and nitrogen-filled capillaries. The temperature
difference was controlled somewhat less rigorously, as it was imposed by holding one
end of the sample cell in a Dewar flask containing a cryogenic liquid while the other
was maintained at room temperature. The result of this was an imposed temperature
gradient that could vary by as much as ∼ 1 %. They measured a correction to
Maxwell’s original estimate, Cs = 0.75, of the thermal slip coefficient, finding that for
a given gas the measured correction factor, �:= Cs/0.75, to Maxwell’s slip coefficient
was independent of the capillary-wall material (nickel, Pyrex and glass tubing) and
ranged from � = 1.35 to 1.50. (These authors do not give explicit error estimates
for the reported values of � . However, the pressure drop data that were fitted to
generate these values embodied disparities as large as 20 % for the higher-pressure
measurements, the latter representing the range of greatest interest in connection
with our current work.) Los & Fergusson’s observation that the slip coefficient is
independent of the physicochemical nature of the capillary-wall material appears
especially surprising when we consider that Maxwell’s slip (or comparable surface
accommodation) arguments suggest that the gas–wall intermolecular interactions,
dependent for a given gas upon the physicochemical wall properties (Sharipov
2004), should be of paramount importance in quantifying thermal transpiration.
The importance of this observed property-independence in adding to the credibility
of our subsequently proposed, purely hydrodynamic, theory of thermal transpiration
is commented upon later.

Finally, a thermal transpiration study (Passian et al. 2003) was conducted using a
micromechanical cantilever in order to probe the effects of mean pressure (and thus
Knudsen number) on the resulting thermomolecular pressure difference (or what the
investigators thereof refer to as the ‘Knudsen force’). The latter experiments show
that in the continuum and near-continuum limits (these being the limits of interest in
the current work) the pressure difference (or equivalent Knudsen force) varies linearly
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with the inverse of the mean pressure. This result is consistent with the previous
experimental studies noted above, which predict that �p varies inversely with p.

In an effort to understand the molecular nature of thermomolecular pressure as
well as the thermal mass slip underlying this phenomenon, Rosner and Papadopoulos
(Rosner 1989; Papadopoulos & Rosner 1995; Rosner & Papadopoulos 1996) used
molecular dynamics to simulate the flow induced in a closed container by an externally
imposed temperature difference. Their results revealed the presence of ‘convection-
type rolls’ even in the absence of gravity. The existence of such recirculating cells was
rationalized by those authors as arising from a presumed mass slip occurring at the
walls, similar to that expressed by (2), acting in concert with the absence of a net
cross-sectionally-averaged mass flow.

While the respective non-continuum theories of Maxwell (1879) and Derjaguin
& Yalamov (1965) accord reasonably well with experiments, both lack a truly
theoretical justification given the essentially continuum state prevailing within the
several gases investigated under the existing experimental conditions. This raises
the issue of attempting to identify the subcontinuum source of the driving force(s)
creating the recirculating flows observed by Papadopoulos and Rosner (Rosner 1989;
Papadopoulos & Rosner 1995; Rosner & Papadopoulos 1996). More specifically, the
question addressed is what is the nature of the molecular-scale physical phenomenon
or phenomena, as revealed by their molecular-dynamics simulations, that serves to
animate the flow along the walls associated with their observed internal recirculation?
Furthermore, if surface–gas intermolecular interactions contribute to the magnitude
of the thermomolecular pressure difference, why is this pressure difference found
experimentally to be independent of the surface constitution of the capillary walls, as
noted by Los & Fergusson (1952)?

2.3. Review of our continuum hypothesis

Subsequent sections propose a purely continuum-level explanation of the phenomenon
of thermal transpiration, applicable in the case of gases to systems wherein
the Knudsen number is effectively zero, and, hence, for which arguments of a
strictly continuum nature should be applicable; that is, rather than invoking any
non-continuum molecular or nonlinear arguments, such as those leading to (2)
and therefore to (1), or, alternatively, introducing seemingly ad hoc irreversible
thermodynamic arguments, such as those leading to (3), we instead employ an
unconventional, albeit purely continuum-level, scheme (Brenner 2005b) to explain
the phenomenon of thermal transpiration. The (generic) modified continuum
equations and no-slip boundary condition underlying this scheme have previously
been demonstrated to reproduce gaseous experimental thermophoretic (Brenner &
Bielenberg 2005) and diffusiophoretic (Bielenberg & Brenner 2005b) data in the so-
called ‘near-continuum’ (Chapman & Cowling 1970) regime prevailing at extremely
small Knudsen numbers. (Moreover, these same arguments furnish results for thermal
diffusion in liquids (Bielenberg & Brenner 2005a) that agree well with experimental
data, although the evidence in that case is of a secondary rather than primary nature.
Explicitly, the proposed scheme for explaining and quantifying thermomolecular
pressure phenomena will be seen to be completely analogous to classic Poiseuille-type
flow calculations for constant-density fluids, albeit adopting a constitutive relation
for the deviatoric portion of Newton’s rheological stress tensor based upon use of the
fluid’s volume velocity vv (Brenner 2004, 2005a, b) in place of its mass or barycentric
velocity vm, together with a comparable change in the choice of velocity upon which
the no-slip boundary condition is to be imposed.
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3. Steady-state flow in a closed capillary animated by a temperature difference
imposed across its ends

3.1. Basic equations

Consider the case of a single-component fluid, liquid or gas, contained in the closed
circular capillary tube (of large aspect ratio, a/L � 1) shown in figure 1, and obeying
the single-component isobaric law of adiabatically additive volumes (Brenner 2005a),
namely

dv̂/dT =const.= Kv, (4)

say, wherein

v̂ = 1/ρ (5)

is the specific volume, and in which the constant Kv is independent of T . The
complete set of gravity-free equations (Brenner 2004, 2005b) governing the steady-
state transport of volume, momentum and energy occurring within the capillary are
given, respectively, by the following trio of (dimensional) equations:

(i) Volume:

∇ · vv = 0; (6)

(ii) Linear momentum:

ρvm · ∇vm = −∇p + µo∇2vv; (7)

(iii) Energy:

ρ(ĉp)ovm· ∇T = ko∇2T + ∇ · (p j v) + βT vm · ∇p + 2µo(∇vv)
sym : (∇vm)sym, (8)

in which β = −ρ−1(∂ρ/∂T )p ≡ Kvρ is the fluid’s coefficient of thermal expansion,
and Dsym = (D + DT )/2 for any dyadic D. Here, and throughout, the subscript ‘o’
affixed to a physical property that would ordinarily vary with temperature (and,
hence, position) refers to some approximate average value of the physical property
over the temperature range of interest; for example, µo = µ(To), with To the average
temperature at which the property is evaluated.

For simplicity, in the preceding transport equations, we have assumed the constancy
of k and µ, as well as of the specific heat capacity ĉp , in addition to our prior
assumption, (4), of adiabatically additive volumes. While the former assumptions
are neither essential to the subsequent analysis nor entirely accurate when the
temperature difference, T+ −T−, is large, they nevertheless enable us to focus attention
on the essential physics of the problem without introducing distracting algebraic
complications.

The usual mass-based continuity equation,

∇ · (ρvm) = 0, (9)

does not constitute an independent transport equation owing to the fundamental
relation (Brenner 2005a),

vv = vm + j v, (10)

in which the diffusive volume current is given constitutively by the expression (Brenner
2005a)

j v = − ko

(ĉp)o
Kv∇T , (11)

wherein pressure effects on the density of the fluid have been assumed small compared
with those due to temperature effects.
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3.2. Boundary conditions

As in figure 1, let (r, z) denote a symmetrical system of circular cylindrical coordinates,
with r̂ and ẑ the corresponding unit vectors. In terms of these variables, the
(dimensional) boundary conditions are:

(i) Temperature:

r̂ · ∇T = 0 at r = a ∀(L > z > − L), (12)

T = T± at z = ± L ∀(a > r > 0); (13)

(ii) Velocity:

ẑ · vv = 0 at r = a ∀(L > z > − L), (14)

r̂ · vm = 0 at r = a ∀(L > z > − L), (15)

ẑ · vm = 0 at z = ±L ∀(a > r > 0). (16)

As regards the no-heat-flux boundary condition (12), in both Los & Fergusson’s
(1952) and Annis’s (1972) experiments, discussed in § 1, the bounding walls of the
capillary were not, in fact, insulated. Instead, measures were taken to ensure that a
linear temperature gradient existed along the capillary sidewalls. Because of the large
aspect ratio of the capillaries that we are considering, the governing equation for the
temperature of the gas in the capillary reduces at leading order to a problem of pure
heat conduction, resulting in a linear temperature gradient in the fluid, independent
of radial position. This is what we subsequently find to be the case anyway (see
(34)), even with use of the insulated capillary sidewall boundary condition, (12),
at least insofar as the leading-order terms characterizing our solution scheme are
concerned. Accordingly, in the interests of simplicity, we have chosen to regard the
capillary as possessing insulated sidewalls for the purpose of comparing our theory
with experiment. This enables attention to be focused exclusively on those transport
processes occurring solely within the fluid, without having to deal simultaneously
with the ensuing algebraic complications stemming from heat transfer through the
solid phase surrounding the otherwise uninsulated capillary sidewalls.

3.3. Non-dimensional scaling

Define the following small dimensionless parameters:

ε = a/L � 1 (17)

and

γ = βo(T+ − T−) � 1, (18)

where, as defined following (8), the subscript ‘o’ denotes some average temperature
lying in the range between T− and T+, which will here be conveniently taken as
To = (T+ +T−)/2. For reasons to be set forth subsequently, we also require satisfaction
of the composite inequality,

γ

ε
� 1, i.e. γ � ε � 1. (19)

The following scaling applies, wherein a quantity to which an asterisk is affixed
denotes a dimensionless scaled field or variable:

T = To(1 + γ T ∗), (20)

ρ =
ρo

1 + βo(T − To)
≡ ρo

1 + γβoToT ∗ ≈ ρo(1 + γβoToT
∗), (21)
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p = po + γ
µoαo

a2
p∗, (22)

v = γ
αo

L
( ẑv∗ + r̂εw∗). (23)

In the above, α = k/ρĉp is the fluid’s thermometric diffusivity. Quantities to which the
subscript o is affixed are taken to be constants, evaluated at the reference temperature
To. Equation (21) is equivalent to the adiabatic law of additive volumes, equation (4),
since βo ≡ Kvρo. In the above, v = ( ẑv + r̂w), with v and w, respectively, representing
the radial and axial components of the dimensional vector velocity field v. The velocity
scaling embodied in (23) is the same for both v = vm and v = vv . In view of (10), this
same scaling necessarily applies to the axial and radial components of j v .

In addition to the preceding scalings of the various dependent-variable fields, we
also have the following coordinate scalings for the independent variables:

z = Lz∗, r = ar∗, (24)

whence

∇ =
1

a

(
r̂

∂

∂r∗ + ε ẑ
∂

∂z∗

)
, ∇2 =

1

a2

[
1

r∗
∂

∂r∗

(
r∗ ∂

∂r∗

)
+ ε2 ∂2

∂z∗2

]
. (25)

Each of the non-dimensional scaled fields appearing above, represented collectively
by, say, the generic symbol f ∗ = f ∗(r∗, z∗; γ, ε), possesses the functional dependence
indicated in the preceding argument of f ∗. The scaling has been chosen such that in
the limit where the two small parameters (17) and (18) each tend to zero, and in the
‘outer’ region, 1 >z∗ > − 1 (i.e. not including the two ‘inner’ regions of dimensionless
length O(ε) existing in proximity to the two end caps, z∗ = ±1), all of the outer fields
are regular (i.e. non-singular) and hence of the form f ∗(r∗, z∗; γ, ε) = f ∗(0)(r∗, z∗) +
g∗(r∗, z∗; γ, ε), where the ‘residue’ g∗ possesses the property that limε→0,γ →0 g∗ = 0.
Thus, all of the outer fields to which the superscript (0) is affixed are dominant in the
limit and each is a non-zero function, dependent, at most, only upon r∗ and z∗.

4. Solution scheme
4.1. Outer expansion

Introduction of the preceding scaled variables into the transport equations (6)–(8),
while retaining only those terms which dominate in the limit (17)–(19), yields the
following quartet of scaled transport equations:

1

r∗
∂

∂r∗

(
r∗w∗(0)

v

)
+

∂v∗(0)
v

∂z∗ = 0, (26)

0 = −∂p∗(0)

∂r∗ + ε
1

r∗
∂

∂r∗

(
r∗ ∂w∗(0)

v

∂r∗

)
, (27)

0 = −∂p∗(0)

∂z∗ +
1

r∗
∂

∂r∗

(
r∗ ∂v∗(0)

v

∂r∗

)
, (28)

0 = ε2 ∂2T ∗(0)

∂z∗2 +
1

r∗
∂

∂r∗

(
r∗ ∂T ∗(0)

∂r∗

)
. (29)

In the momentum and energy equations (27)–(29), we have recognized that terms of
O(ε2) dominate over comparable terms of O(γ 2) owing to the composite inequality
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(19). As such, in deriving these equations, we have passed to the limit γ → 0 while
still retaining the more dominant terms in ε, namely those leading-order terms in ε

which remain in the limit where ε � 1. It is this fact that has enabled us to neglect
both the inertial terms in the momentum equation (7) compared with the viscous
terms, and the convective and dissipative terms in the energy equation (8) compared
with the conduction term. Upon passing to the second limit ε → 0, it is seen that (27)
separately requires that

∂p∗(0)

∂r∗ = 0 (30)

and

∂

∂r∗

(
r∗ ∂w∗(0)

v

∂r∗

)
= 0. (31)

Likewise, (29) gives rise to the pair of equations,

∂

∂r∗

(
r∗ ∂T ∗(0)

∂r∗

)
= 0 (32)

and

∂2T ∗(0)

∂z∗2
= 0. (33)

A first integration of (32) yields r∗∂T ∗(0)/∂r∗ = F (z∗). A second integration thus
gives T ∗(0) = F (z∗) ln r∗ + G(z∗), where F and G are integration functions to be
determined. The requirement that the temperature be non-singular along the cylinder
axis r∗ =0 requires that F = 0. Accordingly, T ∗(0) is, at most, a function only of z∗.
As such, (33) reverts in status from a partial to an ordinary differential equation,
d2T ∗(0)/dz∗2 = 0, from which it follows that

dT ∗(0)
/
dz∗ = const. (34)

Owing to the lack of dependence of T ∗(0) upon r∗, (34) automatically fulfils the
boundary condition (12) expressing the fact that the cylinder sidewalls are insulated.

According to (30), p∗(0) is independent of r∗ and hence is, at most, a function only
of z∗. Two consecutive integrations of (28) over r∗ thus yields

v∗(0)
v =

1

4

dp∗(0)

dz∗ r∗2 + H (z∗) ln r∗ + I (z∗).

The requirement that v∗(0)
v be non-singular along the axis of the capillary requires that

H = 0. Furthermore, the no-slip volume velocity boundary condition, equation (14),
requiring that v∗(0)

v = 0 at r∗ =1 for all − 1 <z∗ < 1 (possibly excluding the two end
points z∗ = ±1 belonging to the inner region) requires that I = −(1/4)(dp∗(0)/dz∗).
Consequently,

v∗(0)
v =

1

4

dp∗(0)

dz∗ (r∗2 − 1). (35)

It remains yet, among other things, to determine the pressure gradient dp∗(0)/dz∗,
which at this stage of the analysis is not necessarily a constant, but may depend upon
z∗.

Owing to the boundary condition (12), equation (11) requires that r̂ · j v = 0 at
r = a. Consequently, (10) in conjunction with the boundary condition (15) requires
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that r̂ · vv = 0 at r = a. Expressed in scaled form, this requires that

w∗(0)
v = 0 at r∗ =1. (36)

A two-fold integration of (31), similar to that of our previous integration of (32),
gives w∗(0)

v = J (z∗) ln r∗ + K(z∗). The requirement that w∗(0)
v be non-singular along

the cylinder axis necessitates that J =0. In addition, the boundary condition (36),
applicable for all z∗ (in the outer region), further requires that K = 0. Consequently,

w∗(0)
v = 0. (37)

Substitution of (33) into (26) shows that ∂v∗(0)
v /∂z∗ =0. In turn, it thus follows from

(31) that d2p∗(0)/dz∗2 = 0. Consequently,

dp∗(0)

dz∗ = const, (38)

independent of z∗. All boundary conditions and transport equations have now been
satisfied (to leading order) except for the ‘inner’ boundary conditions (13) and (16)
prevailing at the ends of the capillary. Satisfaction of these will be seen to determine
uniquely the values of the two unknown constants appearing in (34) and (38).

The mass-based continuity equation (9) together with the mass-based
impenetrability conditions (15) and (16) leads straightforwardly to the conclusion
that the total mass flux through any cross-sectional plane, z =const, in the capillary
is necessarily zero. Explicitly, this requires that in the outer region,∫ a

r =0

ρ(0)v(0)
m dA = 0, (39)

where dA = 2πr dr is an element of cross-sectional area. (This vanishing integral
cross-sectional flow condition, which derives from the impermeability condition (16)
imposed at the capillary ends in conjunction with (15), is an exact relation. As such,
it applies in both the outer and inner regions.) Since the density is assumed to be
a function only of temperature, and since the temperature T (0) is a function only
of z, it follows that ρ(0) = ρ(0)(z). As such, ρ(0) may be removed from beneath the
integral sign, leading to the simpler requirement that

∫ a

r = 0
v(0)

m dA =0. Since, from (10),
vm = vv − jv , the vanishing net mass flux requirement in the outer region is seen to be
equivalent to the equality ∫ a

r=0

v(0)
v dA =

∫ a

r=0

j (0)
v dA. (40)

In dimensional form, (35) becomes

v(0)
v =

a2

4µo

dp(0)

dz

[( r

a

)2

− 1

]
. (41)

On the other hand, (11) is equivalent to

j (0)
v = −αoβo

dT (0)

dz
. (42)

Effecting the requisite integrations in (40) over r thus yields the following relation
between the respective pressure and the temperature gradients:

dp(0)

dz
=

8µoαoβo

a2

dT (0)

dz
. (43)
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Recall from (34) and (38) that both the outer pressure and temperature gradients
appearing in the above equation are constants, independent of axial position z within
the capillary.

4.2. Inner expansion

The equations derived thus far are strictly applicable only in the outer region, which
excludes the end-cap cylindrical regions of lengths O(a) lying near the respective
ends, z =+L and z = −L, of the capillary. Formally, analysis of the precise details
occurring in these regions could be effected by defining the pair of ‘inner’ independent
scaled variables, z̃∗

+ = (1 − z∗)/ε and z̃∗
− = (1 + z∗)/ε, in the respective neighbourhoods

of z∗ = +1 and z∗ = −1, thus rendering both z̃∗
± = O(1) in the respective inner regions.

In turn, in the language of matched asymptotic expansions of singular perturbation
theory (Van Dyke 1975), the resulting inner fields must be matched with their outer
field counterparts (in their common overlapping domains of validity). The outer
fields have already been calculated above, modulo knowledge of the as yet unknown
constants, dT (0)/dz and dp(0)/dz, appearing therein. As such, the requisite matching
scheme serves to determine uniquely, inter alia, the values of these two constants. It is
in the neighbourhood of the two inner regions that the mass fluid motion, vm (which
will subsequently be seen to be flowing in the region proximate to the sidewalls from
the hot towards the cold end of the capillary), must reverse direction as it encounters
the end caps, in order that there be no net mass flow. Clearly, the detailed flow
reversal occurring in these regions will lead to a quite complex mass velocity field, say
ṽ(0)

m , in the inner regions, possessing both axial and radial components. However, it
is equally apparent that, despite this complexity, the respective temperatures in these
regions will not depart sensibly from the values prescribed at the ends in (13). As
such, it is obvious from the dimensional form of (34), together with the fact that this
temperature gradient is uniform throughout the entire outer field of length 2L, that
a formal matching of the respective inner and outer temperature fields, T̃ (0) and T (0)

(with T̃ (0) satisfying the inner boundary conditions (13)) will give rise to the following
expression for the uniform temperature gradient in the outer region:

dT (0)

dz
=

T+ − T−

2L
. (44)

The latter in conjunction with the constancy of dp(0)/dz throughout the outer region,
jointly with (38), thus results in the following expression for the thermomolecuular
pressure difference across the capillary:

p+ − p− =
8µoαoβo(T+ − T−)

a2
≡ γ

8µoαo

a2
, (45)

this result for �p being correct to terms of leading order in the small parameter γ .
As such, according to our theory, provided that the fluid expands upon being heated,
so that βo > 0, find that p+ >p−, corresponding to the fact that the pressure will
be highest at the hotter side of the capillary. Equation (45) is presumably equally
applicable to both liquids and gases given the fact that our derivation does not, thus
far, distinguish between these two states of matter. In view of the requisite inequality,
γ � 1, it might appear that this pressure difference is necessarily small, and hence
likely to prove difficult to observe experimentally, especially in liquids. (Of course, in
the case of gases, �p has already been successfully observed experimentally long ago
by Reynolds (1879), despite the relative crudity of the equipment available to him at
that time.) However, the magnitudes of the other physical parameters appearing in
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(45) may be such that the resulting pressure difference is, in fact, quite large despite the
smallness of γ . This situation could occur, for example, in the case of liquids of large
viscosity or in capillaries of small radius. There is, of course, no restriction imposed
upon the pressure difference �p itself; rather, the only pressure-related requirement
is that the effect of the local pressure gradient upon the density of the fluid be small
compared with the corresponding effect thereon of the temperature gradient.

Although not explicitly required, in the interests of completeness, we note that
when expressed in terms of the originally prescribed data, the respective volume- and
mass-velocity fields in the outer region are, respectively,

v(0)
v = − ẑγ

αo

L

[
1 −

( r

a

)2
]

, (46)

v(0)
m = − ẑγ

1

2

αo

L

[
1 − 2

( r

a

)2
]

, (47)

where the unit vector ẑ, which points in the direction of the temperature gradient
(figure 1), is directed from the cold towards the hot end of the capillary. Upon
setting r = a in (47), it follows that ẑ · vm �= 0 along the capillary sidewall, showing
that vm slips along this wall, just as in the case of Maxwell’s thermal slip formula,
(2). Accompanying this slip, we see that throughout the annular region, a/

√
2 <r � a,

proximate to the capillary wall, the fluid mass flows from cold to hot, while in the
central core, a/

√
2 >r > 0, the fluid mass reverses direction upon encountering the

impermeable end caps, such that no net mass flow occurs in any capillary cross-section.

5. Detailed comparison with experiments
5.1. The case of gases

In the case of ideal gases, we have β = 1/T . Moreover, the Prandtl number is defined
as Pr =υ/α, where υ = µ/ρ is the kinematic viscosity. Accordingly, upon suppressing
the arbitrary reference affix o in (45) we obtain

p+ − p− = 8C ′
s

µ2

a2ρT
(T+ − T−), (48)

where C ′
s =1/Pr . (The coefficient C ′

s appearing in (48) is the exact counterpart of
Maxwell’s mass-velocity slip coefficient Cs in (2) for the barycentric slip velocity,
in the sense that in present circumstances we have from (47) and (44) that
ẑ ẑ · v(0)

m = αo ẑ dT (0)/dz at r = a, wherein αo = C ′
sυo by the definition that C ′

s =1/Pr .)
Except for the possible difference in slip coefficients between our C ′

s and Maxwell’s Cs

in (1), the two formulae are constitutively identical, despite their having been obtained
by very different arguments. According to the Eucken relation (Bird et al. 2002),
Pr = 2/3 and 14/19, respectively, for monatomic and diatomic gases. Consequently,

C ′
s = (1.5, 1.36) (monatomic, diatomic). (49)

In the case of monatomic gases, our slip coefficient, C ′
s = 3/2, differs from Maxwell’s

Cs = 3/4 value by a factor of two. Recall, however, that Derjaguin & Yalamov (1965,
1972) claim that Maxwell’s thermal transpiration formula, (1), in which Cs = 3/4, is
too small by a factor of about two with regard to its agreement with experiment.

In the context of the penultimate sentence of the preceding paragraph, it is pertinent
to note that Sharipov (2004) points out that according to kinetic theory, Maxwell’s
thermal slip coefficient Cs for monatomic gases may actually vary between 3/4 and
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Gas d(�p)/d(1/p) Present work Maxwell Derjaguin & Yalmanov
Experimental Equation (50) Equation (1) Equation (3)

Helium 4.4 6.7 (3.3–11.6) 3.3 7.0
Neon 2.0 3.7 (2.3–5.9) 1.8 3.5
Argon 0.63 1.1 (0.6–1.8) 0.5 1.0
Krypton 0.46 0.7 (0.4–1.2) 0.3 0.7
Nitrogen 0.50 0.9 (0.5–1.4) 0.4 0.8

Table 1. Comparison of the experimental results of Annis (1972) with the three thermal
transpiration theories. All tabular values above are reported in pressure-squared units of
(torr)2. Experimental parameter values used in (50) were evaluated at the arithmetic mean
temperature, (T+ + T−)/2, of the ends of the capillary. Limiting property values, based upon
evaluating physical properties at the extreme temperature limits, T+ and T−, respectively, rather
than at the mean temperature, and presumably bracketing the range of possible values predicted
by the present theory, are reported parenthetically in the column labeled ‘Present work’. That
the above results for the four rare gases are not exactly twice of those Maxwell’s is due simply
to our having rounded out the first decimal place in the tabulation so as to properly reflect
the uncertainty in the experimental data relative to the estimated degree of approximation
implicit in our theoretical calculations by virtue of our having replaced temperature-dependent
gas properties such as viscosity by average position-independent values thereof. In making the
comparable comparison with Maxwell’s theory in the case of the nitrogen, it should be borne
in mind that nitrogen is a diatomic gas, whose specific heat ratio is different from that for
Maxwell’s monatomic ‘Maxwellian’ molecules (cf. (49)).

3/2, where the first value corresponds to the diffuse reflection of molecules from the
surface (the model originally adopted by Maxwell (1879) based upon his implicit,
albeit somewhat arbitrary, choice of an accommodation coefficient), while the second
value corresponds to the opposite situation, namely back reflection. The second value
cited by Sharipov (2004), namely Cs = 3/2, accords exactly with our result for the slip
coefficient, derived from our strictly continuum-level assumption that there is no slip
of the volume velocity at a solid surface (combined with use of the ideal-gas specific
heat ratio, ĉp/ĉv = 5/3, for monatomic gases). As such, the factor of two distinguishing
our prediction of the thermomolecular pressure �p for the case of monatomic gases
from that of Maxwell, (1), can be rationalized in terms of differing molecular-level
assumptions about the magnitude of the accommodation coefficient at a solid surface.

5.2. Comparison of the several theoretical models with experiments performed on gases

Below, we compare our thermomolecular pressure prediction, (48), as well as those
of previous investigators, namely (1) and (3), with Annis’s (1972) experimental
observations on gases. To do so, we recast (48) into a more appropriate form
by supposing ideal gas behaviour, namely ρT = (M/R)p, appropriate to Annis’s
experiment. This results in the expression

p+ − p− = C ′
s

[
8µ2R(T+ − T−)

a2M

]
1

p
. (50)

Table 1 shows the requisite comparison. (The theoretical comparisons presented by
Annis (1972) appear in graphical, rather than tabular numerical, format. As such,
small errors may have been incurred during our estimation from those graphs of the
numerical values displayed in table 1.) Annis’s (1972) experiments were performed at
very small Knudsen numbers (Kn ≈ 10−2), spanning multiple mean pressure values
for the five different gases studied (both monatomic and diatomic). He observed
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that a plot of the experimental data in the form of �p vs. 1/p for a given gas–
capillary system yielded a straight line (standard deviation from a linear fit for each
gas tested ranged from 1.2 to 5.6 %), bearing in mind that the viscosity of an ideal
gas is independent of pressure (Bird et al. 2002, p. 21). This 1/p dependence of
the thermomolecular pressure difference also accords with the experimental work of
Passian et al. (2003). As such, comparison of Annis’s experimental measurements with
the respective theoretical predictions of the resulting slope, d(�p)/d(1/p), provides
an effective measure of the accuracy of each of the three theories.

Table 1 shows all three theoretical approaches to be consistent with the experimental
data of Annis. It is important to recall, however, that the theories of Maxwell (1879)
and Derjaguin & Yalmanov (1965) employed molecularly based arguments and
semi-empirical parameters of perhaps questionable validity to predict the effective
barycentric velocity slip at the capillary wall surface. Moreover, each entailed a
second shear-slip parameter (see the paragraph following (1)), requiring knowledge of
the wall’s accommodation coefficient, an empirical parameter, for the particular gas
confined within. In contrast, the purely continuum hydrodynamic theory used in our
work is devoid of any such adjustable parameters.

Our generic volume–velocity-based no-slip boundary condition renders the pressure
drop expression, (50), independent of the material properties of the capillary walls
(such independence being similar to what has always been observed to be the
case for conventional isothermal single-component flow results derived using the
classical no-slip boundary condition imposed upon vm). As such, our predictions are
consistent with the results of Los & Fergusson (1952), who demonstrated that the
thermomolecular pressure drop was the same for all of the materials studied by them
(Pyrex, glass and nickel). Qualitatively, the predictions for the experimental pressure
drop derived in this work are somewhat higher than those presented by the preceding
authors, with our theory predicting the following slip-coefficient corrections due to
Los & Fergusson (1952): �Argon = 2 (vs. the measured values �Argon = 1.35 − 1.5)
and �Nitrogen = 1.8 (vs. the measured value of �Nitrogen = 1.35). It appears that, even
to within the reported and/or expected experimental error, the predictions of our
theory are systematically somewhat high. It is not clear if this disparity is due to the
various approximations made during the course of the calculations (e.g. temperature-
independence of viscosity, thermal conductivity, etc.) or to a more fundamental source.

In our search of the thermal transpiration literature, we were unable to find any
experimental studies of thermomolecular pressure in liquids. However, in anticipation
of future experiments, (45) allows us to make order-of-magnitude predictions about
such effects, useful in designing appropriate experiments. For, say, toluene, this would
result in �p/�T ≈ 1 × 10−4 Pascal/Kelvin in a channel with a 50 µm radius, or
�p/�T = O(1) Pascal/Kelvin for a channel with a radius of the order of 1 µm.
Obviously, if our theory is correct, the choice of a fluid of much higher viscosity
than that of toluene would render the requisite measurements more experimentally
accessible. At first glance, the characteristic channel dimensions given above may seem
small. However, given current manufacturing techniques in the field of microfluidics,
such experiments appear to lie with the realm of possibility (Passian et al. 2003).

6. Discussion and conclusions
6.1. Force balance

Beyond the observed accord with experiment discussed in the previous section, the
thermal transpiration results presented herein appear to be dynamically consistent,
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albeit requiring recognition that systems which are closed to net mass flow may,
nevertheless, be open to volume ‘flow’ in a dynamical sense (Brenner 2005a). For
example, since no external force acts on the fluid contained in the capillary, and since
the motion is steady, it is not inappropriate to wonder what force serves to balance
the pressure force A�p (with A= πa2 the cross-sectional area of the capillary) acting
over the ends owing to the existence of the thermomolecular pressure difference, �p.
In our treatment, it is evident that this balancing force must stem from the viscous
stresses acting along the walls of the capillary as a consequence of the axial non-zero
volume velocity shear rate, ∂v(0)

v /∂r at r = a. This is readily confirmed because in
the absence of inertial effects, to which to our zero-order approximation (27)–(28)
conforms, the pressure tensor is solenoidal,∇ · P0

v = 0, wherein P(0)
v = −Ip(0) + T(0)

v , with
the deviatoric portion T(0)

v of this stress based upon Newton’s law of viscosity, in
which vv appears in place of vm (Brenner 2004, 2005b). As such, the net external
force, F(0) =

∮
∂V

dS · P0
v , exerted by the surroundings on the fluid contained within the

capillary must be identically zero, requiring that the pressure force A�p acting over
the ends of the capillary exactly balance the shearing force along the walls. That is,
with F(0) = F(0)

± + F(0)
w = 0, in which the symbols have an obvious meaning, it follows

that F(0)
w = −F(0)

± . This leads to the conclusion that the external force exerted by the
surroundings on the wall is

F(0)
w = ẑπa2

(
p

(0)
+ − p

(0)
+

)
, (51)

a result which we have confirmed by direct integration of the stresses, F(0)
w =∮

∂Vs
dS · P0

v , acting over the sidewalls ∂Vs of the capillary.

6.2. Thermodynamic considerations

Interesting and fundamental issues arise with respect to thermodynamic conside-
rations of energy conservation and entropy production in regard to the intrinsic
differences between Maxwell’s (1879) theory of thermal transpiration and our theory,
as herein outlined. However, these disparities are not resolvable at the present zero-
level of approximation, but rather require explicitly addressing the higher-order terms
in our perturbation scheme, currently unavailable. Indeed, calculation of the higher-
order terms in the expansion would also be of interest in terms of establishing whether
or not this would improve the agreement of the present theory with Annis’s (1972)
and Los & Fergusson’s (1952) experiments.

6.3. The physical basis for regarding vv rather than vm as the fluid velocity v

The present study was motivated solely by the desire to provide further experimental
support for the credibility of our modified theory of viscous fluid mechanics (Brenner
2004, 2005b), above and beyond the experimental evidence already offered in this
connection with regard to the phenomena of thermophoresis (Brenner & Bielenberg
2005) and diffusiophoresis (Bielenberg & Brenner 2005b) in the case of gases,
and thermal diffusion (Bielenberg & Brenner 2005a) in the case of liquids. When
comparing theory with experiment, it is important to note that vm = vv identically
in the case of so-called ‘incompressible’ fluids (Brenner 2005a), namely fluids whose
density ρ is uniform throughout. As such, the huge body of data already available
for incompressible fluid experiments, currently serving to support Stokes’ original
v = vm-based no-slip hypothesis, Is · vm = 0 (Lauga, Brenner & Stone 2005), as well
as Newton’s rheological hypothesis, T= 2µ∇vm + Iκ∇ · vm (where ∇v denotes the
symmetric traceless velocity gradient dyadic and κ the dilatational or bulk viscosity),
now also serve, with equal merit, to support both our v = vv-based no-slip, Is · vv = 0,
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and Newton’s law, T =2µ∇vv + Iκ∇ · vv , hypotheses. Note that the latter bulk viscosity
contribution vanishes in circumstances where the law of additive volumes, (6), holds.

While agreement with experiment is the ultimate arbiter of the success of any theory,
it is equally important to understand the theory’s physical basis, especially when the
theory purports to overthrow long-held physical notions about the phenomenon.
Accordingly, in this subsection we summarize the underlying rationale behind the
two proposed changes, namely from vm to vv , of the velocity v appearing in the
no-slip boundary condition, Is · v = 0 on solid surfaces, and in Newton’s rheological
constitutive law, T =2µ∇v + Iκ∇ · v, for the deviatoric stress. This rationale, which
has not previously been fully articulated elsewhere, naturally predates its eventual
application towards explaining any of the specific thermophoretic (Brenner &
Bielenberg 2005), thermal diffusion (Bielenberg & Brenner 2005a), or diffusiophoretic
(Bielenberg & Brenner (2005b) boundary-value problems that were solved during the
course of attempting to verify the theory, including the present vv-based explanation
of thermal transpiration phenomena.

The single physical principle underlying the proposed changes from vm to vv

resides in the view (Brenner 2005b) that the velocity v appearing in the basic
equations of continuum fluid mechanics should, physically, represent the Lagrangian
velocity vl of the fluid, the latter as defined by the expression vl := (∂x/∂t)x0

. Here,
x = x(x0, t) denotes the instantaneous position in space at time t of the particular
‘tracer’ particle that at time t = 0 occupied the spatial position x0. The mapping
x = x(x0, t) corresponds to the spatio-temporal trajectory of the effectively point-size
tracer particle bearing the identifying ‘label’ x0. Given the view that vl represents
the local physical velocity with which the fluid continuum moves through space
(rather than, say, the statistically-mean velocity of a collection of mobile molecules
as embodied in the notion of a so-called differentially-sized ‘material fluid particle’),
it appears natural to expect vl to constitute the velocity v appearing, inter alia, in
both Newton’s law of viscosity and in the no-slip boundary condition. (Recall that
a material fluid particle (MFP), is defined as being a body of fluid defined by the
property that all of the points x lying on its surface move instantaneously with the
local mass velocity vm(x, t) of the fluid, with the latter being the velocity appearing in
the continuity equation (Slattery 1972). According to the Reynolds transport theorem,
a material fluid particle always consists of the same amount of mass. However, the
collective mass of molecules composing an MFP does not permanently consist of
the same matter, since individual molecules are free to enter and leave the body
through its intrinsically permeable surface. When effectively differential in size, an
MFP is envisaged in the continuum fluid-mechanical literature (Slattery 1972) as
constituting the ‘tracer particle’ being monitored when applying the definition of the
fluid’s Lagrangian velocity vl . However, lacking the permanence of a material entity,
an MFP, being intrinsically ephemeral, cannot, experimentally, be monitored when
applying the definition of vl to an unchanging entity permanently identified by the
label x0. Only an actual physical particle of unimpeachable integrity, one whose mass
and matter coincide for all time, can serve this purpose.)

To the extent that vl is thus regarded as being synonymous with the fluid’s mass
velocity vm – the latter being the normalized flux density appearing in the continuity
equation, ∂ρ/∂t + ∇ · nm = 0 (with nm = ρvm the flux density of mass) – it is entirely
appropriate that the unadorned velocity symbol v appearing in both Newton’s law
of viscosity and the no-slip boundary condition should implicitly refer to the fluid’s
mass velocity vm. On the other hand, were it to be convincingly demonstrated by
performing tracer experiments that vl = vv – without invoking, a priori, the pair of
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vm → vv changes that we have advocated – it would then be equally appropriate
to identify the unadorned velocity v appearing in both Newton’s law of viscosity
and the no-slip condition with vv when solving viscous boundary-value problems of
the types being addressed in this and related papers (Brenner & Bielenberg 2005;
Bielenberg & Brenner 2005a, b). From this objective perspective, the issue of which
velocity, vm or vv , if indeed either, is most likely to be the correct velocity v ≡ vl

appearing in the dynamical equations of motion when solving viscous fluid boundary-
value problems involving solid surfaces has to be based solely on the outcome of
experiments performed wherein no macroscopic solid surfaces are present in the
fluid, and in whose objective interpretation the issue of Newton’s viscosity law is
never invoked. We refer here to purely kinematical experiments, requiring knowledge
neither of the correct dynamics nor energetics when interpreting the outcome of
measurements of the fluid’s velocity v. Thus, for example, Bird et al. (2002, p. 534)
posit ‘that ρv is the local rate at which mass passes through a unit cross section
placed perpendicular to the velocity v’, stating further that: ‘This is the local velocity
one could measure by means of a Pitot tube . . . , and corresponds to the v used in
the equation of motion and in the energy equation . . . , for pure fluids.’ However,
their scheme does not pose an objective measurement of v, since the interpretation of
the kinematical symbol v obtained in this manner hinges on the use of the so-called
Bernoulli equation, a dynamical relation.

Our purely kinematical interpretation of experimental thermophoretic particle
movement through gases (Brenner 2004, 2005b; Brenner & Bielenberg 2005) appears
to confirm the view that Lagrangian velocity vl of the fluid, as measured by monitoring
the velocity of a physical ‘tracer’ particle as the latter pursues its trajectory through
space, is not generally synonymous with vm, but rather with the fluid’s volume velocity
vv (Brenner 2005a). As summarized in what follows, the argument underlying the
belief that vl = vv is based upon a straightforward purely kinematical calculation
of the volume velocity vv (cf. (6), (10) and (11)) of a quiescent single-component
compressible particle-free fluid subject to a temperature gradient and undergoing
pure heat conduction (so that vm = 0), with the said calculation having nothing
whatsoever to do with either the issue of a no-slip boundary condition on a particle,
or of the viability of Newton’s law of viscosity. As regards the latter rheological issue,
for a specified fluid, the calculation of the fluid’s volume velocity vv from (10), being
independent of the fluid’s rheological properties, does not depend upon whether the
fluid is or is not Newtonian, much less the issue of whether the constitutive form of
the fluid’s deviatoric stress T derives from ∇vm or ∇vv , were the fluid to prove to be
Newtonian. Comparison of this theoretical vv calculation with existing correlations of
experimental data for the observed thermophoretic velocity U of non-heat-conducting
particles in gases in the continuum region of Knudsen numbers revealed (Brenner
2005b) that U (which, remarkably, is found to be independent of particle size as well
as of the particle’s physical properties) and vv were identical, at least to within the
estimated uncertainty implicit in the correlation.

The preceding observation led to the seemingly inescapable conclusion that,
despite the fact that the particle-free fluid was at rest (vm = 0), it was nevertheless
already ‘flowing’ through space at a uniform velocity vv prior to introducing the
thermophoretic particle into the fluid. Hence, the obvious interpretation of the U = vv

equality is that, when inserted into the fluid, the particle is subsequently entrained in
this already flowing fluid, and is thus simply carried along passively therein. Given the
notion that the fluid’s Lagrangian velocity vl has to be measured experimentally by
monitoring the velocity of an inert and passive ‘tracer’ particle (Brenner 2005b) as it
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moves along the fluid’s spatio-temporal trajectory, it seemed inevitable to thus identify
the particle-free fluid’s Lagrangian velocity vl as being vv , rather than vm. Bear in mind
that this purely kinematical conclusion has nothing whatsoever to do with whether it
is vm or vv that appears in the constitutive form of Newton’s law of viscosity for the
particle-free fluid, or with whether the no-slip boundary condition on a particle in
that fluid is imposed upon vm or vv . Nor is our tracer-based conclusion that vl = vv

rooted in any fact stemming from Maxwell’s (1879) thermal creep boundary condition
imposed upon vm at solid surfaces, nor from Maxwell’s (1879) and Burnett’s (1935,
1936) notions of the existence of thermal stresses in single-component quiescent gases
(Kogan 1973, 1986, 2003; Kogan et al. 1976).

(In the preceding paragraph we have deliberately used the word ‘flowing’, rather
than ‘moving’, in the same sense as one refers to heat ‘flowing’ by conduction through
a fluid despite the absence of convective mass movement of the fluid. Heat or,
more properly, energy share the common attribute of being abstract non-material
extensive physical properties that can be transported solely by diffusion, rather than
being carried through space in the company of mass. Volume is just another such
non-material property.)

Given the above argument regarding the Lagrangian velocity of the fluid, it was
natural to assume, subject to experimental verification, that the appropriate fluid-
mechanical velocity v appearing in Newton’s viscosity law as well as in the no-slip
condition at solid surfaces should be the physically identifiable Lagrangian velocity
of the fluid, namely vl ≡ vv . This point of view was pursued by Brenner & Bielenberg
(2005), who used this pair of assumptions in place of their more conventional vm-
based counterparts to solve theoretically the trio of continuity, linear momentum and
energy equations for the thermophoretic velocity of a force- and torque-free small
heat-conducting spherical particle through a Newtonian fluid, gaseous or liquid. That
calculation led to results which agreed well with gaseous experimental thermophoretic
data for the now heat-conducting particle case, again to within reasonable estimates
of experimental uncertainties, thereby buttressing support for the correctness of the
view that vv rather than vm should be used in Newton’s viscosity law and in the
no-slip boundary condition. The present paper was thus designed to show, by now
solving this trio of theoretical equations for the case of gaseous thermal transpiration
in capillaries, that this same pair of vm → vv changes also furnishes results that accord
with experiment.

Strictly speaking, our several theoretical analyses, involving the respective solutions
of this trio of equations (albeit species mass rather than energy in the two-
component diffusiophoretic case), provide support for only our no-slip hypothesis,
leaving unresolved the issue of whether Newton’s law of viscosity should be based
upon vm or vv . The same is true of our present thermophoretic analysis. The
because the distinction between the respective ∇vm and ∇vv viscosity contributions
disappears from the linear momentum equation in both the thermophoretic (Brenner
& Bielenberg 2005) and present thermal transpiration cases owing to the fact that
µo∇2vv = µo∇2vm in both, at least to terms of dominant order in the respective
perturbation parameters. As such, the agreement of each of these analyses with
data provides experimental evidence only for the viability of our no-slip hypothesis.
However, as discussed in Brenner (2005b, § 4), there does exist strong theoretical
evidence for the viability of our Newton’s law vv hypothesis, such testimony being
based upon its agreement with Burnett’s (1935) extension of the Chapman–Enskog
perturbation solution (Chapman & Cowling 1970) of Boltzmann’s gas–kinetic theory
equation, as embodied in Kogan’s view of thermal stresses being on a par with
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Newton’s vm-based viscous stresses, and thus representing a distinct additional
mechanism for the diffuse transport of momentum.

The molecular mechanism underlying the origin of these thermal stresses can be
understood by recognizing the important distinction between mass and matter when
focusing on an MFP in the case of single-component fluids within which temperature
gradients exist, since each molecule (of mass m and velocity u) carries with it an
amount of momentum mu and energy mu2/2. Because the individual velocities u are
statistically distributed – and thus dependent, on average, upon the local temperature
T of the fluid – it becomes theoretically possible in a single-component fluid for the
mutual interchange of a pair of molecules initially lying on opposite sides of the
MFP’s surface to result in a net exchange of momentum and energy despite the fact
that there is no net exchange of total mass. The existence of temperature gradients
thus affords the possibility for a diffuse (i.e. non-convective) transport of momentum
and energy across the MFP’s material surface, above and beyond the standard
amounts of these extensive properties associated with Newton’s and Fourier’s laws,
respectively constituting diffuse momentum and energy transport processes. Were
we to consider the case of, say, pure heat conduction in a fluid at rest, for which
vm = 0, the traditional form of Newton’s viscosity law, wherein v = vm, would predict
the absence of any diffuse viscous momentum transport. However, the existence of
thermal stresses in gases in circumstances where vm = 0 has long been recognized,
ever since the time of Maxwell (1879), as later confirmed by Burnett (1935, 1936).
Such stresses arise in fluids for much the same reason as thermoelastic stresses arise
in solids (Iesan & Scalia 1996; Noda, Hetnarski & Tanigawa 2002), namely, the non-
uniform expansion of matter arising from density gradients, such gradients emanating
from the dependence of the material’s specific volume on temperature. While thermal
stresses in gases are often assumed on the basis of Burnett’s (1935, 1936) calculations
to be non-continuum in nature, thus presumably arising only at non-zero Knudsen
numbers, the work of Kogan and his collaborators (Kogan 1973, 1986, 2003; Kogan
et al. 1976) negates this commonly held view. Explicitly, their work points out that
during flow processes (i.e. vm �= 0), when the Reynolds number characterizing the gas’s
motion is of order unity, the diffuse transport of momentum arising from thermal
stresses is of the same order of magnitude as the diffuse transport of momentum
arising from Newton’s vm-based viscosity law. This issue is discussed at length by
Brenner (2005b), where it is shown that the proposed replacement of vm by vv in
Newton’s viscosity law is, in the case of gases, exactly equivalent to the addition of
these diffuse thermal stresses to Newton’s traditional vm-based viscosity law, at least
in the case of Maxwell molecules.

In summary, purely kinematical tracer velocity experiments based upon data in
fluids from which solid surfaces are absent supports the view that a fluid’s Lagrangian
velocity is equal to its volume velocity rather than its mass velocity. Independently
of this fact, experimentally based dynamical/energetic evidence, derived from the
respective solutions of several viscous flow boundary-value problems, following
comparison of their predictions with experimental data, supports the view that the
no-slip boundary condition at solid surfaces should be imposed upon the volume-
rather than mass-velocity. As yet, only purely theoretical arguments, derived from the
kinetic theory of gases, exist in favour of our hypothesis that the velocity appearing in
Newton’s law of viscosity should be the volume velocity, although our hypothesis is,
ipso facto, consistent with the same experimental data as currently supports belief in
its present vm-based status. Another major question still outstanding (Brenner 2005b)
is that of whether the constitutive equation for the specific momentum density of a
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fluid is given by vm, as is currently supposed, or, seemingly more rationally based
upon its Lagrangian antecedents, by vv . Again, this issue can only be decided on the
basis of experiment. All experiments to date fall within the range of creeping-flow
Reynolds numbers, where contributions arising from inertial momentum effects are
negligible relative to viscous effects.

6.4. Concluding remarks

From the comparisons presented in table 1, as well as those outlined in other
publications (Bielenberg & Brenner 2005b; Brenner & Bielenberg 2005) concerned
with our volume–velocity-based interpretation of thermophoretic and diffusiophoretic
data, it is clear that this unconventional continuum-hydrodynamic theory (including
the volume–velocity-based tangential no-slip boundary condition) outlined previously
(Brenner 2005b), is consistent with a wide variety of experimental observations in
gases, whose outcome has heretofore been explained as arising from Maxwell (1879)
thermal creep slip effects. The latter slip is quantified in the literature by use of
empirical phenomenological parameters or estimates thereof based upon the choice
of an accommodation coefficient characterizing the nature of the gas–solid interaction,
i.e. diffuse or back reflection of the gas molecules from the surface (Sharipov 2004), as
was discussed earlier. In contrast, in our modified theory, the physicochemical nature
of the solid surface is irrelevant to the phenomenon, a conclusion consistent with
the available thermal transpiration data of Los & Fergusson (1952) as well as with
related thermophoretic particle velocity correlations (Brenner & Bielenberg 2005),
whose current interpretation also embodies the notion of Maxwell thermal creep. Our
generic volume–velocity-based fluid-mechanical theory (Brenner 2005b) presumably
applies equally to liquid-phase systems, having been put to the test in the case of
interpreting thermal diffusion experiments (Bielenberg & Brenner 2005a). However,
to the best of our knowledge, no thermal transpiration experiments involving liquids
have yet been performed. Such notions for liquids, if correct, may prove to be of
value in microfluidic and related applications (Braun & Libchaber 2002; Day 2003).
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